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Learning targets

Learning targets

• Connection between symmetries and conservation laws

• Flavour symmetry of the strong interaction

• Introduction of the notion of isospin: definition, properties

• How to combine quarks into hadrons: baryons made of 𝑢	and	𝑑 quarks and baryon wavefunction
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Introduction

• Symmetries play a fundamental role in particle physics – an aim of particle physics is to uncover the 

fundamental symmetries of the universe

• We will apply the idea of symmetry to the quark model with the aim to:

• derive the hadron wave function

• provide an introduction to the more abstract ideas of colour and QCD

• ultimately explain why hadrons only exist as 𝑞"𝑞 (mesons), 𝑞𝑞𝑞 (baryons) or "𝑞"𝑞"𝑞 (antibaryons)

• We will introduce ideas of the 𝑆𝑈 2  and 𝑆𝑈 3  symmetry groups which play a major role in particle 

physics
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Symmetries and Conservation Laws

• Suppose physics is invariant under the transformation

    e.g. rotation of the coordinate system

• It must conserve the probability normalisation condition
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𝜓 → 𝜓! = $𝑈𝜓

𝜓 𝜓 = 𝜓! 𝜓! = $𝑈𝜓 $𝑈𝜓 = 𝜓 $𝑈" $𝑈 𝜓

⟹ $𝑈" $𝑈 = 1 i.e. $𝑈 must be a unitary operator



Symmetries and Conservation Laws

• For physical predictions to be changed by the symmetry transformation it is also required that all QM 

matrix elements remain unchanged

    which leads to the requirement
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𝜓 $𝐻 𝜓 = 𝜓! $𝐻 𝜓! = 𝜓 $𝑈" $𝐻$𝑈 𝜓

⟹ $𝐻, $𝑈 = 0 i.e. $𝑈 must commute with the Hamiltonian

$𝑈" $𝐻$𝑈 = $𝐻

×$𝑈	 $𝑈$𝑈" $𝐻$𝑈 = $𝑈$𝐻 ⟹ $𝐻$𝑈 = $𝑈$𝐻



Symmetries and Conservation Laws

• Now consider the infinitesimal transformation

    +𝐺 is called the generator of the transformation

• For -𝑈 to be unitary:

    neglecting 𝒪 𝜖! ∶ -𝑈"-𝑈 = 1 ⟹ +𝐺 = +𝐺" i.e +𝐺 is a Hermitian operator and therefore corresponds to an

    observable quantity 𝐺!

• Furthermore: -𝐻, -𝑈 = 0 ⟹ -𝐻, 1 + 𝑖𝜖 +𝐺 = 0 ⟹ -𝐻, +𝐺 = 0

• From QM: #
#$

+𝐺 = 𝑖 -𝐻, +𝐺 = 0 ⟹ 𝑮 is a conserved quantity
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$𝑈 = 1 + 𝑖𝜖 0𝐺

$𝑈" $𝑈 = 1 + 𝑖𝜖 0𝐺 ⋅ 1 − 𝑖𝜖 0𝐺" = 1 + 𝑖𝜖 0𝐺 − 0𝐺" + 𝒪 𝜖#



Symmetries ⟺Conservation Laws

• Each symmetry in nature leads to an observable conserved quantity

• Example: infinitesimal spatial translation 𝑥 → 𝑥 + 𝜖

• we expect physics to be invariant (unchanged) under 𝜓 𝑥 → 𝜓! = 𝜓(𝑥 + 𝜖)

• 𝜓! = 𝜓 𝑥 + 𝜖 = 𝜓 𝑥 + "#
"$
𝜖 = 1 + 𝜖 "

"$
𝜓

• but 𝑝̂$ = −𝑖𝜕/𝜕𝑥 ⟹𝜓! 𝑥 = 1 + 𝑖𝜖𝑝̂$ 𝜓 𝑥

• the generator of the symmetry transformation is 𝑝̂$ ⟹ 𝑝$ is conserved

• translation invariance of physics implies momentum conservation!

• In general, the symmetry operator may depend on more than one parameter

• Example: for an infinitesimal 3D linear translation 𝑟 → 𝑟 + 𝜖 ⟹ -𝑈 = 1 + 𝑖𝜖 ⋅ 𝑝⃗	, 𝑝⃗ = (𝑝̂%, 𝑝̂&, 𝑝̂')
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$𝑈 = 1 + 𝑖𝜖 ⋅ 𝐺⃗



Symmetries ⟺Conservation Laws

• So far, we only considered an infinitesimal transformation, however any finite transformation can be 

expressed as a series of infinitesimal transformations:

• Example: finite spatial translation in 1D 𝑥 → 𝑥 + 𝑥( with -𝑈 𝑥( = 𝑒)%!⋅ +,":

• 𝜓! 𝑥 = 𝜓 𝑥 + 𝑥% = 3𝑈𝜓 𝑥 = 𝑒($!'/'$)𝜓, 	 with	 𝑝̂$ = −𝑖 "
"$

• = 1 + 𝑥%
"
"$
+ $!"

*
""

"$"
+⋯ 𝜓 𝑥

• = 𝜓 𝑥 + 𝑥%
"#
"$
+ $!"

*
""#
"$"

+⋯

• we obtain the expected Taylor expansion
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$𝑈 𝛼 = lim
$→&

1 + 𝑖
𝛼⃗
𝑛
⋅ 𝐺⃗

$

=𝑒'(⋅+⃗



Symmetries in particle physics: isospin
• The proton and neutron have very similar mass, and the nuclear force is found to be (approximately) 

independent of charge 

• To reflect this symmetry, Heisenberg proposed in 1932 that if one could “switch off” the electric charge 

of the proton, there would be no way to distinguish between a proton and a neutron

• He proposed that the proton and neutron should be considered as the two states of a single entity, the 

nucleon

• Analogous to the spin-up and spin-down states of spin-half particle, called isospin

• Physics is expected to be invariant under rotations in this space

• The neutron and proton form an isospin doublet with total isospin 𝐼 = 1/2 and third component 𝐼! = ±1/2
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𝑉,, ≈ 𝑉$, ≈ 𝑉$$

𝑝 =
1
0
, 	𝑛 =

0
1



Flavour symmetry of the strong interaction

• We can extend this idea to the quarks

• Assume that the strong interaction treats all quark flavours equally (it does)

• because 𝑚+ ≈ 𝑚' the strong interaction has an approximate flavour symmetry, from the point of view of the 

strong interaction nothing changes if all up quarks are replaced by down quarks and vice versa

• Choose the basis:

• Express the invariance of the strong interaction under 𝑢 ↔ 𝑑 as invariance under “rotations” in the 

abstract isospin space
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𝑢 =
1
0 , 	𝑑 =

0
1

𝑢!

𝑑! = $𝑈
𝑢
𝑑 = 𝑈-- 𝑈-#

𝑈#- 𝑈##
𝑢
𝑑



Flavour symmetry of the strong interaction

• The 2×2 unitary matrix depends on 4 complex numbers (8 real parameters) but we also get 4 constraints 

from -𝑈"-𝑈 = 1

• In the language of group theory, these 4 matrices form the 𝑼 𝟐  group
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⟹ 8− 4 = 4 independent matrices



Flavour symmetry of the strong interaction

• One of the matrices corresponds to multiplying by a phase factor

    not a flavour transformation and of no relevance here

• The remaining matrices form an 𝑆𝑈 2  subgroup (special unitary) with det	𝑈 = 1

• For an infinitesimal transformation, in terms of the Hermitian generators +𝐺:

• A linearly independent choice for +𝐺 are the Pauli spin matrices

• The proposed flavour symmetry of the strong interaction has the same transformation properties as spin!
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$𝑈 = 1 + 𝑖𝜖 0𝐺, det 𝑈 = 1	and	Tr 0𝐺 = 0

$𝑈- =
1 0
0 1 𝑒'.

𝜎- =
0 1
1 0 , 𝜎- =

0 −𝑖
𝑖 0 , 𝜎/ =

1 0
0 −1



Flavour symmetry of the strong interaction

• Define isospin:

• For an infinitesimal transformation

    which is required by unitarity and has a unit determinant
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𝑇 = 1/2𝜎⃗ , $𝑈 = 𝑒'(⋅0

$𝑈 = 1 +
𝑖
2 𝜖 ⋅ 𝜎⃗ = 1 +

𝑖
2 𝜖-𝜎- + 𝜖#𝜎# + 𝜖/𝜎/ = 1 + 𝑖/2 ⋅ 𝜖/ 𝑖/2 ⋅ 𝜖- − 𝑖𝜖#

𝑖/2 ⋅ 𝜖- + 𝑖𝜖# 1 − 𝑖/2 ⋅ 𝜖/

$𝑈" $𝑈 = 𝐼 + 𝒪 𝜖# , det 𝑈 = 1 + 𝒪 𝜖#



Properties of isospin

• Isospin has the same properties as spin

• Like in the case of spin, we have three non-commuting operators 𝑇-, 𝑇!, 𝑇. and even though all three 

correspond to observables we can’t measure them simultaneously. 

• We label states in terms of the total isospin 𝐼 and the third component of the isospin 𝐼.

• Note: physically isospin has nothing to do with spin – just the same algebra
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𝑇-, 𝑇# = 𝑖𝑇/, 𝑇#, 𝑇/ = 𝑖𝑇-, 𝑇/, 𝑇- = 𝑖𝑇#

𝑇#, 𝑇/ = 0, 	 𝑇# = 𝑇-# + 𝑇## + 𝑇/#



Properties of isospin

• The eigenstates are exact analogues to the eigenstates of ordinary angular momentum | ⟩𝑙, 𝑚 → | ⟩𝐼, 𝐼.  with 

𝑇!| ⟩𝐼, 𝐼. = 𝐼(𝐼 + 1)| ⟩𝐼, 𝐼.  and 𝑇.| ⟩𝐼, 𝐼. = 𝐼.| ⟩𝐼, 𝐼.

• In general: 𝐼. =
-
!
𝑁/ − 𝑁#
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Properties of isospin

• We can define the isospin ladder operators – analogous to spin ladder oerators

• Go up and down in 𝐼. until you reach the end of the multiplet:	 𝑇0| ⟩𝐼, +𝐼 = 0 and 𝑇1| ⟩𝐼, −𝐼 = 0

• Ladder operators turn 𝑢 into 𝑑 and 𝑑 into 𝑢
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𝑇1𝑢 = 0, 𝑇1𝑑 = 𝑢, 	 𝑇2𝑑 = 0, 	 𝑇2𝑢 = 𝑑



Properties of isospin

• Combination of isospin: the isospin of a system of two 𝑑 quarks is exactly analogous to combination of 

spin (or angular momentum)

• 𝐼. is additive: 𝐼. = 𝐼.
- + 𝐼.

!

• 𝐼 is in integer steps from 𝐼.
- − 𝐼.

!  to 𝐼.
- + 𝐼.

!
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O𝐼 - , 𝐼/
- O𝐼 # , 𝐼/

# → | ⟩𝐼, 𝐼/



Properties of isospin

• The assumed symmetry of the strong interaction under isospin transformations implies the existence of 

conserved quantities

• In strong interactions 𝐼. and 𝐼 are conserved, analogous to conservation of 𝐽' and 𝐽 for angular 

momentum

• It’s a natural conclusion because the strong interaction does not change the flavour and charge of quarks!
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Combining quarks to form hadrons

• Goal: derive the proton wavefunction

• first combine two quarks, then add a third

• use the requirements that fermion wavefunctions are antisymmetric

• Isospin starts to become useful in defining states with more than one quark 

• For two quarks there are four possible combinations:
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Combining quarks

• We can immediately identify the extremes (𝐼. additive):

• To obtain the | ⟩1,0  state we use the ladder operators: 

• The final state | ⟩0,0  can be found from orthogonality with | ⟩1,0
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𝑢𝑢 ≡ O
1
2
,
1
2

O
1
2
,
1
2
	 = | ⟩1, +1 , 𝑑𝑑 ≡ O

1
2
,−
1
2

O
1
2
,−
1
2
	 = | ⟩1, −1

T2 ⟩1, +1 = 2 ⟩1,0 = 𝑇? 𝑢𝑢 = 𝑢𝑑 + 𝑑𝑢

⟹ | ⟩1,0 =
1
2
𝑢𝑑 + 𝑑𝑢

| ⟩0,0 =
1
2
𝑢𝑑 − 𝑑𝑢



Combining quarks

• From the four possible combinations of isospin doubles obtain a triplet of isospin-1 states and a singlet 

isospin 0 state: 2⨂2 = 3⨂1

• We can move within multiplets using ladder operators

• Note: as anticipated 𝐼. =
-
! 𝑁/ − 𝑁#

• States with different isospin are physically different – the isospin-1 triplet is symmetric under 

interchange of quarks 1 and 2 whereas the singlet is antisymmetric 21



Combining quarks

• Now add an additional up or down quark

• From each of the above four states we get two new isospin states with 𝐼.2 = 𝐼. ±
-
!
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Combining quarks

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets 

• Obtain the 𝐼 = 3/2 states, step up from 𝑑𝑑𝑑 
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𝑇1| ⟩3/2, −3/2 = 𝑇1 𝑑𝑑𝑑 = 𝑇1𝑑 𝑑𝑑 + 𝑑 𝑇1𝑑 𝑑 + 𝑑𝑑(𝑇1𝑑)

3 | ⟩3/2, −1/2  = 𝑢𝑑𝑑 + 𝑑𝑢𝑑 + 𝑑𝑑𝑢

⟹ | ⟩3/2,−1/2 = 1/ 3(𝑢𝑑𝑑 + 𝑑𝑢𝑑 + 𝑑𝑑𝑢)



Combining quarks

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets 

• Obtain the 𝐼 = 3/2 states, step up from 𝑑𝑑𝑑 
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𝑇1| ⟩3/2, −1/2 = 1/ 3𝑇1 𝑢𝑑𝑑 + 𝑑𝑢𝑑 + 𝑑𝑑𝑢

2 | ⟩3/2, +1/2  = 𝑢𝑢𝑑 + 𝑢𝑑𝑢 + 𝑢𝑢𝑑 + 𝑑𝑢𝑢 + 𝑢𝑑𝑢 + 𝑑𝑢𝑢

⟹ | ⟩3/2,+1/2 = 1/ 3(𝑢𝑢𝑑 + 𝑢𝑑𝑢 + 𝑑𝑢𝑢)



Combining quarks

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets 

• Obtain the 𝐼 = 3/2 states, step up from 𝑑𝑑𝑑 
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𝑇1| ⟩3/2, +1/2 = 1/ 3𝑇1 𝑢𝑢𝑑 + 𝑢𝑑𝑢 + 𝑑𝑢𝑢

2 | ⟩3/2, +3/2  = 1/ 3 𝑢𝑢𝑢 + 𝑢𝑢𝑢 + 𝑢𝑢𝑢

⟹ | ⟩3/2,+3/2 = 𝑢𝑢𝑢



Combining quarks

• From the six states we used orthogonality to find the |1 ⟩/2, ±1/2  

• The eight states 𝑢𝑢𝑢, 𝑢𝑢𝑑, 𝑢𝑑𝑢, 𝑢𝑑𝑑, 𝑑𝑢𝑢, 𝑑𝑢𝑑, 𝑑𝑑𝑢, 𝑑𝑑𝑑 are grouped into an isospin quadruplet and two 

isospin doublets

• Different multiplets have different symmetry properties:

• S: a quadruplet of states which are symmetric under the interchange of any two quarks

• 𝑀,: a doublet of mixed symmetry, symmetric for 1 ↔ 2

• 𝑀-: a doublet of mixed symmetry, antisymmetric for 1 ↔ 2

• Mixed-symmetry states have no definite symmetry under interchange of quarks 1 ↔ 3 etc.
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2⨂2⨂2 = 2⨂ 3⨂1 = 2⨂3 ⨂(2⨂1) = 4⨂2⨂2



Combining quarks: summary
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Combining spin
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• We can use exactly the same mathematics to determine the possible spin wavefunctions for a 

combination of 3 spin-half particles



Baryon wavefunctions 𝒖𝒅
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• Quarks are fermions ⟹ require that the total wavefunction is antisymmetric under the exchange of any 

two quarks

• The total wavefunction can be expressed in terms of 

• The color wavefunction for all bound 𝑞𝑞𝑞 states is antisymmetric (not a subject of this lecture)

• Here we will only consider the lowest mass, ground-state baryons with no internal orbital angular 

momentum

• For 𝐿 = 0 the spatial wavefunction is symmetric: −1 3	

𝜓 = 𝜙3456789𝜒:;<=𝜉>7479𝜂:;5>?



Baryon wavefunctions 𝒖𝒅
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• Two ways to form a totally symmetric wavefunction from spin and isospin states

1. Combine totally symmetric spin and isospin wavefunctions 𝜙 𝑆 𝜒 𝑆

2. Combine mixed–symmetry spin and mixed–symmetry isospin states

• both 𝜙 𝑀, 𝜒 𝑀,  and 𝜙 𝑀- 𝜒 𝑀-  are symmetric under interchange of quarks 1 ↔ 2

• not sufficient, these combinations have no definite symmetry under interchange of quarks 1 ↔ 3

• it can be shown that the normalised linear combination is totally symmetric (under 1 ↔ 2, 1 ↔ 3, and 2 ↔ 3 )

1
2
𝜙 𝑀@ 𝜒 𝑀@ + 𝜙 𝑀A 𝜒 𝑀A



Baryon wavefunctions 𝒖𝒅
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• The spin-up proton wavefunction is therefore

• Note: the fully symmetric proton wavefunction would include the antisymmetric color wavefunction , 

which itself has six terms, giving a total of 54 terms with different combinations of flavour, spin and 

color. In practice, the above proton wavefunction is sufficient to calculate the physical properties of the 

proton (e.g. magnetic moment)



Summary of Lecture 11
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Main learning outcomes

• What is the connection between symmetries and conservation laws in particle physics

• Isospin properties and algebra

• How to combine 𝑢 and 𝑑 quarks into hadrons 

• Baryon wavefunction


