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Learning targets

Learning targets

* Connection between symmetries and conservation laws
 Flavour symmetry of the strong interaction
* Introduction of the notion of isospin: definition, properties

* How to combine quarks into hadrons: baryons made of u and d quarks and baryon wavefunction



Introduction

« Symmetries play a fundamental role in particle physics — an aim of particle physics is to uncover the

fundamental symmetries of the universe

* We will apply the idea of symmetry to the quark model with the aim to:
* derive the hadron wave function
 provide an introduction to the more abstract ideas of colour and QCD

* ultimately explain why hadrons only exist as qq (mesons), qqq (baryons) or gqq (antibaryons)

* We will introduce ideas of the SU(2) and SU(3) symmetry groups which play a major role in particle
physics



Symmetries and Conservation Laws

* Suppose physics is invariant under the transformation
Y >y = Uy
e.g. rotation of the coordinate system

* It must conserve the probability normalisation condition

Wly) = @' [Py = (Ty|Typ) = (Y|TTT|)

= UTU = 1i.e. U must be a unitary operator



Symmetries and Conservation Laws

 For physical predictions to be changed by the symmetry transformation it is also required that all QM

matrix elements remain unchanged
(WIAL) = ('[H[w) = W|TTHT])

which leads to the requirement
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= |H, U] = 0i.e. U must commute with the Hamiltonian



Symmetries and Conservation Laws

Now consider the infinitesimal transformation
U=1+ieG

G is called the generator of the transformation

For U to be unitary:
UT0 =(1+ieG) - (1—ieGT) =1+ie(G—GT) + 0(e?)
neglecting 0(e2) : UTU = 1= G = G'i.e G is a Hermitian operator and therefore corresponds to an

observable quantity G!

Furthermore: [H,U| = 0= [H,1+ieG|=0= |H,G| =0

From QM: %(CA}) = i(|H,G|) = 0 = G is a conserved quantity



Symmetries &< Conservation Laws

* Each symmetry in nature leads to an observable conserved quantity

« Example: infinitesimal spatial translation x - x + €

« we expect physics to be invariant (unchanged) under Y (x) = Y’ = Y(x + €)
pect phy 8

1/1’=z/;(x+e)=1/;(x)+g—fe=(1+e:—x)1/)

but p, = —id/dx = P'(x) = (1 + iep,)Y(x)

the generator of the symmetry transformation is p, = p, is conserved

translation invariance of physics implies momentum conservation!

* In general, the symmetry operator may depend on more than one parameter
U=1+i€-G

+ Example: for an infinitesimal 3D linear translation 7 > #+ € = U =1+ i€, p = By, Dy, Dz)



Symmetries &< Conservation Laws

* So far, we only considered an infinitesimal transformation, however any finite transformation can be

expressed as a series of infinitesimal transformations:

Nn—0oo n

- n
—~ a - —s 2
U(a) = lim (1 + i—-G) —el® G

« Example: finite spatial translation in 1D x — x + x, with U(x,) = e'*oPx;

W' (%) = P(x + xg) = T(x) = e®od/a0y,  with p, = _l.a%

x% 92

= (1+X0:—x+?ﬁ+"°)lp(x)

_ oY x50
—lp(x)+xoax+ » ax2+

we obtain the expected Taylor expansion



Symmetries in particle physics: isospin

The proton and neutron have very similar mass, and the nuclear force is found to be (approximately)

independent of charge
Vor = Vnp = Vo

To reflect this symmetry, Heisenberg proposed in 1932 that if one could “switch oft” the electric charge

of the proton, there would be no way to distinguish between a proton and a neutron

He proposed that the proton and neutron should be considered as the two states of a single entity, the

() ()

Analogous to the spin-up and spin-down states of spin-half particle, called isospin

nucleon

Physics is expected to be invariant under rotations in this space

The neutron and proton form an isospin doublet with total isospin I = 1/2 and third component I3 = +1/2
9



Flavour symmetry of the strong interaction

* We can extend this idea to the quarks

Assume that the strong interaction treats all quark flavours equally (it does)

* because m, = my the strong interaction has an approximate flavour symmetry, from the point of view of the

strong interaction nothing changes if all up quarks are replaced by down quarks and vice versa

() 4= ()

Express the invariance of the strong interaction under u < d as invariance under “rotations” in the

(5)=0(5 )=(o2 o3 )

Choose the basis:

abstract isospin space



Flavour symmetry of the strong interaction

* The 2X2 unitary matrix depends on 4 complex numbers (8 real parameters) but we also get 4 constraints
from U0 = 1

— 8 — 4 = 4 independent matrices

* In the language of group theory, these 4 matrices form the U(2) group



Flavour symmetry of the strong interaction

One of the matrices corresponds to multiplying by a phase factor

7 _ (1 0\ g

Uy = ( 0 1) e
not a flavour transformation and of no relevance here
The remaining matrices form an SU(2) subgroup (special unitary) with det U = 1
For an infinitesimal transformation, in terms of the Hermitian generators G-

U=1+ieG, detU = 1and Tr(G) = 0
A linearly independent choice for G are the Pauli spin matrices
_ (0 1 _ (0 =i (1 0
01_(1 o)' 01_(1' o)' 03_(0 —1)

The proposed flavour symmetry of the strong interaction has the same transformation properties as spin!



Flavour symmetry of the strong interaction

* Define isospin:
- Py —
T = 1/25‘ U = elta’T
* For an infinitesimal transformation

l

i . > i 1+i/2-
U=1+§E'O'=1+E(610'1+620'2+E30'3)=( l/ €3

l/2 . (El + iEZ)
which is required by unitarity and has a unit determinant

U0 =1+ 0(e?), detU =1+ 0(e?)

l/2 ‘ (El _iEZ)
1—i/2‘63

)



Properties of isospin

Isospin has the same properties as spin
[T1, T2] = iT5, [T2, T3] = iTy, [T5,T1] = iT,

[T2,T5] =0, T? =Tf +T§ +T#

Like in the case of spin, we have three non-commuting operators Ty, T, T3 and even though all three

correspond to observables we can’t measure them simultaneously.
We label states in terms of the total isospin I and the third component of the isospin I3
Note: physically isospin has nothing to do with spin — just the same algebra

14



Properties of isospin

* The eigenstates are exact analogues to the eigenstates of ordinary angular momentum |l, m) — |I, I3) with

T2|I,13> = I(I + 1)'],13) and T3|I,I3> — 13|1,13)

1 [ 0
=(0)=I2+s)  d=(7)=15-1)
d u
® ® > [ gl gy
o BE AN
2 2

* In general: I3 = %(Nu — Ny)
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Properties of isospin

* We can define the isospin ladder operators — analogous to spin ladder oerators

T T
T =7 T — T =T T

= ID 5 o > I, i (P LD
u-—d T BY = /IT+1) =B+ )|+ 1) d-u

T_|I,LL)=+/II+1)—L(lz—1)|I,l5—1)

* Go up and down in I3 until you reach the end of the multiplet: T,|I,+I) =0and T_|I,—1) = 0
T,u=0, T,.d =u, T_d =0, T_u=d

« Ladder operators turn u into d and d into u

16



Properties of isospin

* Combination of isospin: the isospin of a system of two d quarks is exactly analogous to combination of

spin (or angular momentum)

‘1(1)’1§1>>| 1(2),,§z>> S L L)

» I3 is additive: I3 = I§1) + I:gz)

* [ is in integer steps from ‘ Iél) _ ]:,EZ)‘ to ‘ Iél) + I;Z)‘



Properties of isospin

* The assumed symmetry of the strong interaction under isospin transformations implies the existence of

conserved quantities

* In strong interactions I; and [ are conserved, analogous to conservation of /, and ] for angular
3 zZ

momentum

* It's a natural conclusion because the strong interaction does not change the flavour and charge of quarks!

18



Combining quarks to form hadrons

* Goal: derive the proton wavefunction
* first combine two quarks, then add a third

* use the requirements that fermion wavefunctions are antisymmetric
* Isospin starts to become useful in defining states with more than one quark

» For two quarks there are four possible combinations:

dd ud,du uu Note: (®) represents two
® - - o— I states with the same value

19



Combining quarks

* We can immediately identify the extremes (I3 additive):

1 I\y11

— H )= 11,+1) ad = |- 1>‘1 1>—1 1)
uu—ziz 2;2 _l) ) —2) 2 21 2 _l'

* To obtain the |1,0) state we use the ladder operators:
T_|1, +1) = v2|1,0) = T_(uw) = ud + du
1

V2

* The final state |0,0) can be found from orthogonality with |1,0)

= |1,0) = — (ud + du)

1
—(ud — du
2( )

0,0) =
|>\/_



Combining quarks

« From the four possible combinations of isospin doubles obtain a triplet of isospin-1 states and a singlet

isospinOstate: 2Q2 =3Q1

dd \%(ud%—du) . \%(ud —du)
— . —> I3 D @ » I3
—— O ——

=1 7 0

* We can move within multiplets using ladder operators
* Note: as anticipated I3 = %(Nu — Ng)

+ States with different isospin are physically different — the isospin-1 triplet is symmetric under

interchange of quarks 1 and 2 whereas the singlet is antisymmetric 21



Combining quarks

* Now add an additional up or down quark

N|b—\

* From each of the above four states we get two new isospin states with I3 = I3

ddu uvid
2 %(ud—l—du)d i\/-(ud—l—dum s \%(ud du)d \%(ud du)
—e - - - - o3 O = — L
-3 =3 04 3 = 0 5

22



Combining quarks

* Use ladder operators and orthogonality to group the 6 states into isospin multiplets

* Obtain the I = 3/2 states, step up from ddd

T o
— B - o /3
2 3
S L

T.|3/2,—3/2) = T, (ddd) = (T,d)dd + d(T,d)d + dd(T.d)
V313/2,—1/2) = udd + dud + ddu

= |3/2,—1/2) = 1/v/3(udd + dud + ddu)

23



Combining quarks

* Use ladder operators and orthogonality to group the 6 states into isospin multiplets

* Obtain the I = 3/2 states, step up from ddd

T o
— B - o /3
2 3
S L

T.|3/2,—1/2) = 1/4/3T, (udd + dud + ddu)
213/2,+1/2) = (uud + udu + uud + duu + udu + duu)

= |3/2,+1/2) = 1/V/3(uud + udu + duu)



Combining quarks

* Use ladder operators and orthogonality to group the 6 states into isospin multiplets

* Obtain the I = 3/2 states, step up from ddd

T o
— B - o /3
2 3
S L

T.|3/2,+1/2) = 1/4/3T, (uud + udu + duu)
213/2,+3/2) = 1/v/3(uuu + uuu + uuu)

= |3/2,+3/2) = uuu

25



Combining quarks

From the six states we used orthogonality to find the |1/2,+1/2)

The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd are grouped into an isospin quadruplet and two

isospin doublets

202®2=203B301)=203)2Q®1) =4R2Q2

Different multiplets have different symmetry properties:
 S:a quadruplet of states which are symmetric under the interchange of any two quarks
* Ms: a doublet of mixed symmetry, symmetric for 1 & 2

* M,: a doublet of mixed symmetry, antisymmetric for 1 & 2

Mixed-symmetry states have no definite symmetry under interchange of quarks 1 < 3 etc.



Combining quarks: summary

3, +3) = uuu

\

A quadruplet of states which
are symmetric under the
interchange of any two quarks

M;s

2, +75) %(uud—l—udu-l-duu)
3.—3) = 5(ddu+dud +udd)

3 3

3 -3) = ddd J
35— 3) = = (2ddu — udd — dud)
%74-%} %(ZLtud—udu—duu) 4
11 1 ‘
by = L (udu — duu) -
5 +t3) =75 *

Mixed symmetry.
Symmetric for 1 «— 2

Mixed symmetry.
Anti-symmetric for 1 = 2

27




Combining spin

* We can use exactly the same mathematics to determine the possible spin wavefunctions for a

combination of 3 spin-half particles

POl I W [\.)IbJ

= NI|—=

D= b=

~
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~
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DIl DI— BI|—

_I_

_.I_
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[
S-Sl
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SI=

TTT

A(TTL+T1T+117)
LT+ 1TL+TL)

/

U =11 =11

Si= Si-

(2111 =111 = 111)

A quadruplet of states which

are symmetric under the

i

(TLL = 111)

M
(117 = 177) A

|

interchange of any two quarks

MS Mixed symmetry.

Symmetric for 1 &= 2

Mixed symmetry.
Anti-symmetric for 1 = 2
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Baryon wavefunctions (ud)

Quarks are fermions = require that the total wavetunction is antisymmetric under the exchange of any

two quarks
The total wavefunction can be expressed in terms of
1/J = ¢f1av0ur)(spingcolornspace
The color wavefunction for all bound gqq states is antisymmetric (not a subject of this lecture)

Here we will only consider the lowest mass, ground-state baryons with no internal orbital angular

momentum

For L = 0 the spatial wavefunction is symmetric:(—1)*

) gcolournspace anti-symmetric

~| Overall anti-symmetric

R (Dﬁavourlspin symmetric




Baryon wavefunctions (ud)

* Two ways to form a totally symmetric wavefunction from spin and isospin states

1. Combine totally symmetric spin and isospin wavefunctions ¢ (S5)x(S)

ddd  J(ddu+dud+udd) 5 (uud + udu+duu) uuu
- 0
A A AT A Spin 3/2
.3 .1 0 .1 .3 > I3 Isospin 3/2
2 =) e 2

2. Combine mixed—-symmetry spin and mixed-symmetry isospin states
* both ¢(Ms)x(Ms) and ¢p(M,)x(M,) are symmetric under interchange of quarks 1 < 2
 not sufficient, these combinations have no definite symmetry under interchange of quarks 1 < 3

* it can be shown that the normalised linear combination is totally symmetric (under1 & 2,1 < 3,and 2 & 3)

n
® ! 1.9 » I, |Spin1/2 1

0 +% Isospin 1/2 V2 (¢(MS)X(M5) + ¢(MA)X(MA))

1
2
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Baryon wavefunctions (ud)

* The spin-up proton wavefunction is therefore

pT)= 6\16(2uud—udu—duu)(2 (N Y e N 23@(“(]“‘—&”‘)”” =)
\pT>:Ll8( 2ululd| —ululdl —ululd]+
— 2uld|ul—uldlul —uldlul+
2d luTul —dlTulul—dTulul)

Note: the fully symmetric proton wavefunction would include the antisymmetric color wavefunction,

which itself has six terms, giving a total of 54 terms with different combinations of flavour, spin and

color. In practice, the above proton wavefunction is sufficient to calculate the physical properties of the

proton (e.g. magnetic moment)

31



Summary of Lecture 11

Main learning outcomes

* What is the connection between symmetries and conservation laws in particle physics
* Isospin properties and algebra
* How to combine u and d quarks into hadrons

* Baryon wavefunction



